The natural product cucurbitacin E inhibits depolymerization of actin filaments.

نویسندگان

  • Pia M Sörensen
  • Roxana E Iacob
  • Marco Fritzsche
  • John R Engen
  • William M Brieher
  • Guillaume Charras
  • Ulrike S Eggert
چکیده

Although small molecule actin modulators have been widely used as research tools, only one cell-permeable small molecule inhibitor of actin depolymerization (jasplakinolide) is commercially available. We report that the natural product cucurbitacin E inhibits actin depolymerization and show that its mechanism of action is different from jasplakinolide. In assays using pure fluorescently labeled actin, cucurbitacin E specifically affects depolymerization without affecting polymerization. It inhibits actin depolymerization at substoichiometric concentrations up to 1:6 cucurbitacin E:actin. Cucurbitacin E specifically binds to filamentous actin (F-actin) forming a covalent bond at residue Cys257, but not to monomeric actin (G-actin). On the basis of its compatibility with phalloidin staining, we show that cucurbitacin E occupies a different binding site on actin filaments. Using loss of fluorescence after localized photoactivation, we found that cucurbitacin E inhibits actin depolymerization in live cells. Cucurbitacin E is a widely available plant-derived natural product, making it a useful tool to study actin dynamics in cells and actin-based processes such as cytokinesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cucurbitacin I Inhibits Cell Motility by Indirectly Interfering with Actin Dynamics

BACKGROUND Cucurbitacins are plant natural products that inhibit activation of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway by an unknown mechanism. They are also known to cause changes in the organization of the actin cytoskeleton. METHODOLOGY/PRINCIPAL FINDINGS We show that cucurbitacin I potently inhibits the migration of Madin-Darby canine k...

متن کامل

Cucurbitacins: elucidation of their interactions with the cytoskeleton

Cucurbitacins, a class of toxic tetracyclic triterpenoids in Cucurbitaceae, modulate many molecular targets. Here we investigated the interactions of cucurbitacin B, E and I with cytoskeletal proteins such as microtubule and actin filaments. The effects of cucurbitacin B, E and I on microtubules and actin filaments were studied in living cells (Hela and U2OS) and in vitro using GFP markers, imm...

متن کامل

UNC-87, a calponin-related protein in C. elegans, antagonizes ADF/cofilin-mediated actin filament dynamics.

Stabilization of actin filaments is critical for supporting actomyosin-based contractility and for maintaining stable cellular structures. Tropomyosin is a well-characterized ubiquitous actin stabilizer that inhibits ADF/cofilin-dependent actin depolymerization. Here, we show that UNC-87, a calponin-related Caenorhabditis elegans protein with seven calponin-like repeats, competes with ADF/cofil...

متن کامل

EPLIN regulates actin dynamics by cross-linking and stabilizing filaments

Epithelial protein lost in neoplasm (EPLIN) is a cytoskeleton-associated protein encoded by a gene that is down-regulated in transformed cells. EPLIN increases the number and size of actin stress fibers and inhibits membrane ruffling induced by Rac. EPLIN has at least two actin binding sites. Purified recombinant EPLIN inhibits actin filament depolymerization and cross-links filaments in bundle...

متن کامل

Twinfilin, a molecular mailman for actin monomers.

Twinfilin is a ubiquitous actin-monomer-binding protein that is composed of two ADF-homology domains. It forms a 1:1 complex with ADP-actin-monomers, inhibits nucleotide exchange on actin monomers and prevents assembly of the monomer into filaments. The two ADF-H domains in twinfilin probably have 3D structures similar to those of the ADF/cofilin proteins and overlapping actin-binding sites. Tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS chemical biology

دوره 7 9  شماره 

صفحات  -

تاریخ انتشار 2012